twodlearn.datasets.unbalanced module¶
-
class
twodlearn.datasets.unbalanced.DfUnbalancedDataset(datasets)[source]¶ Bases:
twodlearn.datasets.unbalanced.UnbalancedDataset-
mapper[source]¶ Decorator used to specify an optional property inside a model. The decorator works similar to @property, but the specified method correponds to the initialization of the property
-
-
class
twodlearn.datasets.unbalanced.UnbalancedDataset(datasets)[source]¶ Bases:
object-
classmethod
from_data(data_x, data_y, DatasetClass=<class 'twodlearn.datasets.base.Dataset'>)[source]¶
-
mapper[source]¶ Decorator used to specify an optional property inside a model. The decorator works similar to @property, but the specified method correponds to the initialization of the property
-
normalizer[source]¶ Decorator used to specify an optional property inside a model. The decorator works similar to @property, but the specified method correponds to the initialization of the property
-
split(values, shuffle=True)[source]¶ Split the dataset according to the percentages provided in values
- Parameters
values (list) – percentages used for splitting the dataset
shuffle (bool) – true if shuffle the dataset before splitting (default True)
- Returns
list with the new datasets
- Return type
list(UnbalancedDataset)
-
classmethod