twodlearn.templates.bayesnet module¶
- 
class twodlearn.templates.bayesnet.EVGPEstimator(options=None, logger_path='tmp', session=None, **kargs)[source]¶
- 
class twodlearn.templates.bayesnet.ExplicitGpEstimator(options=None, logger_path='tmp', session=None, **kargs)[source]¶
- Bases: - twodlearn.templates.bayesnet.GpEstimator- Explicit gp estimator - 
fit(train_x, train_y, max_iter=100)[source]¶
- fit the gaussian process to the training data. By default, the parameters of the kernel are optimized. - Parameters
- train_x – input training data [batch_size, x_size]. 
- train_y – output training data [batch_size, y_size]. 
- max_iter – number of maximum iterations to run the optimization. Defaults to 100. 
 
 
 
- 
- 
class twodlearn.templates.bayesnet.GpEstimator(options=None, logger_path='tmp', session=None, **kargs)[source]¶
- Bases: - twodlearn.templates.supervised.SupervisedEstimator- 
fit(train_x, train_y, max_iter=100)[source]¶
- fit the gaussian process to the training data. By default, the parameters of the kernel are optimized. - Parameters
- train_x – input training data [batch_size, x_size]. 
- train_y – output training data [batch_size, y_size]. 
- max_iter – number of maximum iterations to run the optimization. Defaults to 100. 
 
 
 
-