twodlearn.templates.bayesnet module¶
-
class
twodlearn.templates.bayesnet.EVGPEstimator(options=None, logger_path='tmp', session=None, **kargs)[source]¶
-
class
twodlearn.templates.bayesnet.ExplicitGpEstimator(options=None, logger_path='tmp', session=None, **kargs)[source]¶ Bases:
twodlearn.templates.bayesnet.GpEstimatorExplicit gp estimator
-
fit(train_x, train_y, max_iter=100)[source]¶ fit the gaussian process to the training data. By default, the parameters of the kernel are optimized.
- Parameters
train_x – input training data [batch_size, x_size].
train_y – output training data [batch_size, y_size].
max_iter – number of maximum iterations to run the optimization. Defaults to 100.
-
-
class
twodlearn.templates.bayesnet.GpEstimator(options=None, logger_path='tmp', session=None, **kargs)[source]¶ Bases:
twodlearn.templates.supervised.SupervisedEstimator-
fit(train_x, train_y, max_iter=100)[source]¶ fit the gaussian process to the training data. By default, the parameters of the kernel are optimized.
- Parameters
train_x – input training data [batch_size, x_size].
train_y – output training data [batch_size, y_size].
max_iter – number of maximum iterations to run the optimization. Defaults to 100.
-