twodlearn.convnet module¶
-
class
twodlearn.convnet.Conv1x1Proj(trainable=True, name=None, *args, **kwargs)[source]¶ Bases:
twodlearn.core.layers.LayerTdl autoinitialization with arguments:
-
kernel[source]¶ (
ParameterInit) Autoinit with arguments [‘initializer’, ‘trainable’]
-
units[source]¶ (
InputArgument) Number of output units (int).
-
bias[source]¶ (
ParameterInit) Autoinit with arguments [‘initializer’, ‘trainable’, ‘use_bias’]
-
activation[source]
-
bias[source] Autoinit with arguments [‘initializer’, ‘trainable’, ‘use_bias’]
-
call(inputs)[source]¶ This is where the layer’s logic lives.
- Parameters
inputs – Input tensor, or list/tuple of input tensors.
**kwargs – Additional keyword arguments.
- Returns
A tensor or list/tuple of tensors.
-
compute_output_shape(input_shape=None)[source]¶ Computes the output shape of the layer.
Assumes that the layer will be built to match that input shape provided.
- Parameters
input_shape – Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer.
- Returns
An input shape tuple.
-
kernel[source] Autoinit with arguments [‘initializer’, ‘trainable’]
-
units[source] Number of output units (int).
-
use_bias[source]
-
-
class
twodlearn.convnet.Conv2DLayer(trainable=True, name=None, *args, **kwargs)[source]¶ Bases:
twodlearn.core.layers.LayerTdl autoinitialization with arguments:
-
padding[source]¶ (
InputArgument) Padding for the convolution. It could be either ‘valid’ or ‘same’. Default is ‘valid’.
-
kernel[source]¶ (
ParameterInit) Autoinit with arguments [‘initializer’, ‘trainable’]
-
input_shape[source]¶ (
InputArgument) Input tensor shape: (n_samples, n_rows, n_cols, n_channels).
-
kernel_size[source]¶ (
InputArgument) Size of the convolution kernels. Must be a tuple/list of two elements (height, width)
-
dilation_rate[source]¶ (
InputArgument) Defaults to (1, 1).
-
filters[source]¶ (
InputArgument) Number of filters (int), equal to the number of output maps.
-
bias[source]¶ (
ParameterInit) Autoinit with arguments [‘initializer’, ‘trainable’, ‘use_bias’]
-
strides[source]¶ (
InputArgument) Convolution strides. Default is (1, 1).
-
bias[source] Autoinit with arguments [‘initializer’, ‘trainable’, ‘use_bias’]
-
call(inputs, *args, **kargs)[source]¶ This is where the layer’s logic lives.
- Parameters
inputs – Input tensor, or list/tuple of input tensors.
**kwargs – Additional keyword arguments.
- Returns
A tensor or list/tuple of tensors.
-
compute_output_shape(input_shape=None)[source]¶ Computes the output shape of the layer.
Assumes that the layer will be built to match that input shape provided.
- Parameters
input_shape – Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer.
- Returns
An input shape tuple.
-
dilation_rate[source] Defaults to (1, 1).
-
filters[source] Number of filters (int), equal to the number of output maps.
-
input_shape[source] (n_samples, n_rows, n_cols, n_channels).
- Type
Input tensor shape
-
kernel[source] Autoinit with arguments [‘initializer’, ‘trainable’]
-
kernel_size[source] Size of the convolution kernels. Must be a tuple/list of two elements (height, width)
-
padding[source] Padding for the convolution. It could be either ‘valid’ or ‘same’. Default is ‘valid’.
-
strides[source] Convolution strides. Default is (1, 1).
-
use_bias[source]
-
-
class
twodlearn.convnet.Conv2DTranspose(trainable=True, name=None, *args, **kwargs)[source]¶ Bases:
twodlearn.convnet.Conv2DLayerTdl autoinitialization with arguments:
-
padding[source]¶ (
InputArgument) Padding for the convolution. It could be either ‘valid’ or ‘same’. Default is ‘valid’.
-
kernel[source]¶ (
ParameterInit) Autoinit with arguments [‘initializer’, ‘trainable’]
-
input_shape[source]¶ (
InputArgument) Input tensor shape: (n_samples, n_rows, n_cols, n_channels).
-
kernel_size[source]¶ (
InputArgument) Size of the convolution kernels. Must be a tuple/list of two elements (height, width)
-
dilation_rate[source]¶ (
InputArgument) Defaults to (1, 1).
-
filters[source]¶ (
InputArgument) Number of filters (int), equal to the number of output maps.
-
bias[source]¶ (
ParameterInit) Autoinit with arguments [‘initializer’, ‘trainable’, ‘use_bias’]
-
strides[source]¶ (
InputArgument) Convolution strides. Default is (1, 1).
-
call(inputs, *args, **kargs)[source]¶ This is where the layer’s logic lives.
- Parameters
inputs – Input tensor, or list/tuple of input tensors.
**kwargs – Additional keyword arguments.
- Returns
A tensor or list/tuple of tensors.
-
compute_output_shape(input_shape)[source]¶ Computes the output shape of the layer.
Assumes that the layer will be built to match that input shape provided.
- Parameters
input_shape – Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer.
- Returns
An input shape tuple.
-
kernel[source] Autoinit with arguments [‘initializer’, ‘trainable’]
-
output_padding[source]
-
-
twodlearn.convnet.conv_output_length(input_length, filter_size, padding, stride, dilation=1)[source]¶ Determines output length of a convolution given input length.
- Parameters
input_length (int) – integer.
filter_size (int) – integer.
padding (str) – one of “same”, “valid”, “full”, “causal”
stride (int) – integer.
dilation (int) – dilation rate, integer.
- Returns
the output length.
- Return type
int