twodlearn.monitoring module¶
- 
class 
twodlearn.monitoring.GradientL2Monitor(*x_tf, **kwargs)[source]¶ Bases:
twodlearn.monitoring.TrainingMonitormonitors the L2 norm of the gradient w.r.t x_tf
- 
class 
twodlearn.monitoring.ImageMonitor(*x_tf, **kwargs)[source]¶ Bases:
twodlearn.monitoring.TrainingMonitorMonitors provided image data
- 
class 
twodlearn.monitoring.MonitorManager(log_folder='tmp/', tf_graph=None, use_tensorboard=True)[source]¶ Bases:
object- 
get_stats()[source]¶ get statistics from loggers @retval dictionary with the statistics of each logger
- 
property 
monitors_data[source]¶ get data_buffer from the monitors @retval data_buffer from the list of monitors as a pandas dataframe
- 
 
- 
class 
twodlearn.monitoring.MonitoringData(folder)[source]¶ Bases:
objectClass for loading tfevent files
- 
class 
twodlearn.monitoring.MonitoringDataV2(folder)[source]¶ Bases:
objectClass for loading tfevent files
- 
class 
twodlearn.monitoring.OpMonitor(*x_tf, **kwargs)[source]¶ Bases:
twodlearn.monitoring.TrainingMonitormonitors the result of the given operation
- 
class 
twodlearn.monitoring.ResetGradientL2Monitor(x, clip_norm, **kwargs)[source]¶ Bases:
twodlearn.monitoring.TrainingMonitormonitors the gradients dl_dx. Gradients are set to zero if their norm is larger than clip_norm
- 
class 
twodlearn.monitoring.SimpleTrainingMonitor(train_vars, valid_vars=None, monitoring_vars=None, log_folder='tmp/monitors/', tf_graph=None)[source]¶ 
- 
class 
twodlearn.monitoring.TrainingMonitor(*x_tf, **kwargs)[source]¶ Bases:
objectThis class creates operations that logs information about the tensor x_tf during training
- 
property 
data[source]¶ Creates a dataframe with the data in the buffer @retval data_buffer as a dataframe
- 
mean(window_size=None)[source]¶ Returns the mean for the last window_size elements @param n_elements
- 
property